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Orientational dynamics of the compressible nematic liquid crystals induced
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We have carried out a numerical study of a system of hydrodynamic equations including director reorien-
tation, fluid flow, temperature, and density redistribution across a compressible hybrid-oriented liquid crystal
(HOLC) cell under the influence of a temperature gradient VT directed normal to the restricting surfaces, when
the sample is heated both from below and above. Calculations show that under the influence of VT the
compressible HOLC sample settles down to a stationary flow regime, both with the horizontal # and vertical w
components of velocity v, and u is directed in the opposite direction, approximately one order of magnitude
less, than the one in the case of an incompressible HOLC cell. The role of hydrodynamic flow in the relaxation
processes of the stress tensor components, for a number of dynamic regimes in the compressible HOLC cell
containing 4-n-pentyl-4'-cyanobiphenyl, has been investigated.
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I. INTRODUCTION

Understanding how an elastic soft material, e.g., a liquid
crystal, deforms under the influence of temperature gradient
is a question of great fundamental interest, as well as an
essential piece of knowledge in material science. In the field
of liquid crystal (LC) phases, a great deal is known about
their deformations under the influence of electric or magnetic
fields [1], whereas comparatively little is known about the
effect of temperature gradient on their static and dynamic
properties.

For example, the seemingly simple problem of horizontal
motion of a LC drop placed between two horizontal plates,
and due to uniform heating from below, has attracted atten-
tion since the beginning of the 20th century [2]; on the other
hand, some progress in understanding of the dynamical prop-
erties of both cholesteric and nematic LC drops under influ-
ence of a vertical temperature gradient, when the LC sample
was heated from below, was achieved only in the past few
years [3—11]. It has been shown that in the heat conduction
regime the magnitude of the hydrodynamic flow v excited by
the temperature gradient VI~ AT/d in the hybrid-oriented
compressible LC (HOCLC) cell, with thickness d, is propor-
tional to v ~ ‘;Z]of;:, where AT=T,-T,>0 (the range [T>,T)]
falls within the stability region of the nematic phase) is the
temperature difference on the LC cell boundaries, 7 is the
viscosity, and o2y ~ gi—f is the tangential component of the
thermomechanical stress tensor oli}?’, and ¢ is the thermome-
chanical constant. In the direction of the hydrodynamic flow
v influences both the direction of the heat flow and the char-
acter of the preferred anchoring of the average molecular
direction A to the restricted surfaces [9,10]. Measurements of
the temperature-induced flow have been performed on the
HOCLC cell [7], where the material exposed by the vertical
temperature gradient was fixed to solid substrates, for in-
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stance, the planar to the upper and homeotropically to the
lower restricted surfaces. The main result of these experi-
mental studies [7,8] is the estimate of the thermomechanical
constant £~ 107!2 J/K m based on the measurements of the
liquid crystal flow in the horizontal direction. Despite the
fact that certain quantitative advances in the hydrodynamical
description of confined nematic LCs under the influence of
the temperature gradient have been achieved only for the
case of incompressible fluids [9], it is still too early to talk
about the development of a theory which would make it
possible to describe the relaxation process in the case of
compressible nematic LCs. In an attempt to make the next
step towards the theoretical description of dissipation pro-
cesses in confined compressible LCs under the influence of a
temperature gradient, we have performed a numerical study
of the system of hydrodynamic equations that include both
director motion and flow of compressible fluid, as well as the
redistribution of the temperature and density fields. To cal-
culate it, one must include the equation of state, the equation
for the velocity v, and consider the coupled director-velocity
equations in the framework of the well-established Ericksen-
Leslie theory [12,13], as well as the thermoconductivity
equation for the temperature field 7(r,z) [14].

The outline of this paper is as follow. The system of hy-
drodynamic equations describing both director motion and
fluid flow of a compressible liquid crystal phase confined
between two bounding surfaces, with accounting for the heat
conduction, caused by heating from below or above, is given
in Sec. II. Numerical results for the relaxation regimes,
caused by the vertical temperature gradient, describing ori-
entational relaxation of the director, velocity, and tempera-
ture, as well as the stress tensor components are given in Sec.
IIT and IV. Conclusions are summarized in Sec. V.

II. FORMULATION OF THE BALANCE OF THE
MOMENTUM AND TORQUE EQUATIONS AND
CONDUCTIVITY EQUATION FOR COMPRESSIBLE
NEMATIC FLUIDS

Upon assuming a compressible fluid d,0+V-(pv)=0, the
hydrodynamic equations describing the reorientation of the
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LC phase confined between two solid surfaces, when a hori-
zontal LC layer heated both from below or above, can be
derived from the balance of elastic, viscous, and thermome-
chanical torques Tg+T,;+T,=0, the Navier-Stokes equa-
tion for the velocity field v, excited by the temperature gra-
dient VT, and the equation for the heat conduction. We
consider a LC system composed of asymmetric polar mol-
ecules, such as cyanobiphenyls, the density p, which are con-
fined between two solid surfaces that impose a preferred ori-
entation of the average molecular direction fi(r) on the
bounding surfaces, for instance, homeotropic on the lower
and planar on the upper bounding surfaces. So, one deals
with the HOCLC cell under influence of the temperature

gradient VT directed parallel to the unit vector K. Here K is a
unit vector directed away from the lower substrate to the
upper one. The coordinate system defined by our task as-
sumes that the director fi(z,r) is in the xz plane (or in the yz

plane), where i is the unit vector directed parallel to the
bounding surfaces, which coincides with the planar director
orientation, for instance, on the upper bounding surface

i If,_,), and j =Kk X i. Assuming that the temperature gradi-

Tzt
JZ—lk we can

=sin 0(¢,2)i

+cos G(t,z)ﬁ, as well as the rest of the physical quantities
also depend only on the z coordinate. Here 6 denotes the
polar angle, i.e., the angle between the direction of the direc-

ent VT varies only in the z direction, VT=
suppose that the components of the director i

tor fi and the normal K to the boundary surfaces. If the di-
rector is disturbed by the heat flow, the relaxation of 1i(z,z) to
its equilibrium orientation A.y(z) in the HOCLC cell, is gov-
erned by elastic Ty, viscous T, and thermomechanical T\,
torques exerted per unit LCs volume. Note that the horizon-
tal LC layer, being initially at rest, if heated both from below
or above, starts moving in the horizontal direction, due to the
temperature gradient [7-9]. This gradient, if expressed in
suitable dimensionless units, is called the Rayleigh (R) num-
ber. As long as the Rayleigh number is not too large, the heat
is transported by conduction [14]. It should be pointed out
that a thin horizontal layer of quiescent LC fluid heated from
below becomes unstable to convection via the Rayleigh-
Benard mechanism. The instability occurs at value R=R,
~ 1708, independent of the fluid under consideration [15].
Taking into account that the size of the LC cell ~10-20 um,
in our case [9] R<R,, and the driving force is not strong
enough to set up of convection via the Rayleigh-Benard
mechanism: thus, in the following we are focused primarily
on the heat conduction regime in the HOLCC [9]. Note that
any physical effect that reorients the director also induces an
additional flow in the LC phase, which, in turn, is coupled to
the director [1]. In the following one deals with the compli-
cated flow v(r,2)=v,(t,2)i+v.(1,2)k=u(t,2)i+w(r,2)k ex-
cited by the temperature gradient and the director reorienta-
tion. In the case of the quasi-two-dimensional compressible
LC system, where the molecules of the HOCLC cell align

and tilt relative to the normal k, and thereby define an array
of unit vectors 4; in the plane x—z of the HOCLC cell, the
dimensionless compressibility condition and the torque bal-
ance equation describing the reorientation of the LC phase
can be written as [9]

PHYSICAL REVIEW E 79, 011708 (2009)

pr+ (pw). =0, (1)
7000,= A, +[6(00).~ 36016
-5 xzﬂz(% + sin? 0), (2)

where p=p(7,z)=p(7,2)/ py is the dimensionless density, pgy
is the mass density of the LC phase, p,=dp(7,2)/d7, u.

=du(7,2)/dz, w.=ow(r,z)/dz, A(0)=A(0)/710=%[y1(x)
—v2(x)cos 2601/ y1p,  G(O)=[K,(x)sin> 6+ K;(x)cos® 6)/ K,
Gy(0) is the derivative of G(6) with respect to 6, 6,
=90(7,2)/dz, x.=dx(7,2)/dz, x(7,2)=T(7,2)/ Ty; is the di-
mensionless temperature, 7; is the nematic-isotropic transi-
tion temperature, y;(x) and 7y,(x) are the temperature-
dependent rotational viscosity coefficients (RVCs), K;(x)
and K;(y) are the splay and bend elastic constants of the LC
phase, ¥,(x)=v:1(x)/v10» and 7,y and K;, are the highest
values of the RVC v,(x) and the splay constant K;(x) in the
temperature interval [ x;, x»] belonging to the nematic phase.
Here 7=(K,y/ v,0d>)t is the dimensionless time, 7=z/d is the
dimensionless distance away from the lower solid surface,
6,=E&Ty/ Ky is the parameter of the system, and &
~107'2 J/mK is the thermomechanical constant [7]. Notice
that the overbars in the space variable z have been elimi-
nated. In the case of compressible fluid the dimensionless
Navier-Stokes equation reduces to [9]

dw(r,2)
2P d = 0.0y, 3)
T
du(r,z)
62p d = azo-zx’ (4)
T

where o,;=0%+0% (i=x,z) are both the shear and normal
stress tensor components ol (1)= 4-1 and o (7)= 4-2 are
the viscous Contrlbutlons to these stress tensor Components
R(T,z)— yiod R(t z) is the full dimensionless Rayleigh dissi-
pation functlon where R(z, z) RVlS+le+Rth, and R
=%h(0)uf—;l(0)6,uz+%y16f+ uw, sin 26’+(]8 2fv)w is
the viscous contribution, Rm=E£6,6.T. (2+s1n 0)

2§Tu 6, sin”> 6— §TW 0, sin 20 is the thermomechanlcal
contribution, and Rth 2T()\” cos? +\ | sin 49)T2 is the ther-
mal contribution, respectively, whereas (TZZ=—Q( 0)6?
=-2Wg and o, =0 (see the Appendix) are the elastic contri-
butions to the normal and shear components of the stress
tensor. Here h(ﬁ) a(T)sin® fcos® 6—A(6)(6) Ou,+5 a4(T)
+g(0), g(0)= 2[016(T)s1n 0+ as(T)cos? 6), T.=dT(t, z)/é’z,
Bo= a1+a5+a6+ ay, 0= pOKlo/yzO is a parameter of the
system, and &, is the volume viscosity. Here a;(T) (i
=1,...,6) are the temperature-dependent six Leslie coeffi-
cients, \j and N\ | are the heat conductivity coefficients par-
allel and perpendicular to the director i. Note, that in the
case of very thin LC layer the hydrostatic pressure gradient
VP contribution both to Egs. (3) and (4) are equal to zero.
Now the full dimensionless stress tensor components o, and
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o, are given by [9] o.(7)= %u sin 26+ (% +EIw,
- % X-0.sin 20-G(6)&> for the normal component and
o (D=h(0)u.,~A(6) 6.~ % 81 x.0. sin® 6+ %wz sin26 for the
shear component, where A(6)=h(6)/v,, and By=PBo/ V1o
When the small temperature gradient VT (~0.05 [K/um]) is

set up across the HOCLC cell, we expect that the tempera-
ture field 7(z,z) satisfies the heat conduction equation [14]

dT
pC,—==¢q.., (5)

P at
where C), is the heat capacity and q;—T% is the heat flow
in the HOCLC cell. Taking into account both that v
=u(t,z)i+w(t,2)k and Ai=(sin 6,0,cos 6), the last equation
can be rewritten in the dimension form [9] as

dr 1
pCpE =\, [T.(\ cos® +sin® 0)]. + g{ 0;{ 0‘(5 +sin® 0)

- éuz sin’ 0}} - é[Twzﬁz sin 26]., (6)
2 . 4
where N=N\j/\ ;.

Notes that the density p, pressure P, and the temperature
T of the liquid-crystal system are connected by an equation
of state, which in our case takes the form (“Boussinesq ap-
proximation”) [16]

p=pll —a(T-T))], (7)

where a= ﬁ(fﬁ’%) p is the volume expansion coefficient. Taking
into account the last equation, the compressibility condition
can be rewritten in the dimensionless form as

1
= Xr=XW—=(x=x)w, + ng=0, (8)
5

whereas both Egs. (3) and (4) takes the forms
dW — -2
O = 85(x — X1)]}E = | h(Ou,~ A(0) 0.~ 5 x.0, sin” 6

+ &wz sin 20] 9)
6 z
and

du

3 2
S{[1-85(x— Xl)]}d—T = {%(HZ sin 26+ §Wz> +&w,

6 .
- Z]Xzez sin 20—g(0)0§} ,

4

(10)

respectively. Here &5=Tyj« is the parameter of the system.
We also expect that the dimensionless temperature field
x(7,z) satisfies the heat conduction equation [9]
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d
8{[1- 85(x - xo]}d—f =[x.(\ cos? 6+ sin’ 0)],

1
+ 54{ Xaz[ @(5 + sin’ 0)

3, |
—~u,sin“ ¢ ——w,sin20( ,
2 4 .

(11)

where 8;=poC,K1o/ (vi0\ 1) and 8;=TxiK o€/ (yio\ 1 d°) are
extra two parameters of the system. Note that the overbars in
the space variable z, in the last four Egs. (8)—(11) have also
been eliminated.

Consider now the LC film confined between two solid
surfaces when the director h is strongly anchored to both
planes, homeotropically to the lower and planar to the upper
bounding surfaces

T
0(Z)z:O = O’ e(z)zzl = E s (12)
and its initial orientation is perturbed to be tilted with respect
to the interface, with 6(7=0,0.0<z=<1.0)=7, and then al-
lowed to relax to its equilibrium value 64(z). The velocity on
these surfaces has to satisfy the no-slip boundary condition

M(Z)zz(): 0, u(Z)zzl :O’

w(z).; =0. (13)

On the other hand, when the director fi is strongly anchored
to the lower and weakly to the upper bounding surface, so
the anchoring energy takes the form [1] W= %A sin?(6,— 6,),
where A is the anchoring strength, 6, and 6, are the polar
angles corresponding to the director orientation on the upper
bounding surface n, and easy axis €, the torque balance
transmitted to the upper surface entails that the director angle
has to satisfy the boundary conditions

0(Z)Z=0 = O’

W(Z)z:() = 0’

Ad
[96(2)/0z).<1 = — sin 246, (14)

30

where Af=6,— 6,, whereas the initial orientation of the di-
rector is disturbed to be tilted with respect to the interface,
with 8(7=0,0.0<z<1.0)=7, and then allowed to relax to
its equilibrium value 6,4(z).

Now, the reorientation of the director in the LC film con-
fined between two solid surfaces, when the relaxation regime
is governed by the viscous, elastic, and thermomechanical
forces, and with accounting for the flow, can be obtained by
solving the system of the nonlinear partial differential Eqs.
(2) and (8)—(11), with the appropriate boundary and initial
conditions 0(0,0.0<z$1.0)=§, both for the polar angle
0(7,z) [Egs. (12) and (14)] and the velocities u(7,z) and
w(r,z) [Eq. (13)].

For the case of 4-n-pentyl-4'-cyanobiphenyl (5CB), at
temperature corresponding to nematic phase, the mass den-
sity ~10% kg/m?, T (5CB) ~307 K, the experimental data
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for elastic constants [17] K,(T) and K;(T) vary between 5
and 13 pN, and 8 and 19 pN, respectively, whereas the ex-
perimental data for y,(7T), obtained using different experi-
mental techniques, vary between 0.033 and 0.071 Pas [18].
So, the highest values are K;y~ 13 pN, K3,~ 19 pN, and
Y10~ 0.071 Pa s, respectively. The experimental values of A
vary between 10™* and 107® J/m? [19]. In the following, we
use the measured values, obtained by the adiabatic screening
calorimetry and photopyroelectric techniques, both for the
specific heat C,~ 10 J/kg K [20], and the thermal conduc-
tivity coefficients A;~0.24 and \ | ~0.13 W/mK [21], the
calculated value of the thermomechanical constant ¢
~107'2 J/mK [7], measured values of the Leslie coefficients
aT) (i=1,...,6) [18], and the values of the volume expan-
sion a~107 K~' [22], and the volume viscosity &,
=0.2 Pas coefficients, respectively. In the case of planar
alignment on the upper surface, when the polar angles 6, and
6, are both close to g, A6 is small, A6~ 1-3°, and therefore
sin 2A0~2A6, so the combination of (Ad/K3;)A6 values is
approximately 0.1. The set of parameters values, which are
involved in Egs. (2) and (8)—(11), are thus &, ~24, &5 ~2
X 1076, §;~6 X107, §,~2X 107, and 8~ 0.3. Using the
fact that 8, <1, the Navier-Stokes equations (9) and (10) can
be considerably simplified as velocities follows adiabatically
the motion of the director. Thus, the whole left-hand side of
Egs. (9) and (10), can be neglected, reducing it to

_ 3 3
o, =h(Ou,— A0)6,.— 551)(1@ sin® 6+ %wz sin260=C,(7)

(15)

and

B 2 5
o, = %(uz sin 20 + ng> +Ew, - lezaz sin 20— G(6) 6

=Cy(7), (16)

respectively, where the functions C;(7) and C,(7) does not
depends on z and will be fixed by the boundary condition
(14). Equation (11) also can be considerably simplified, be-
cause both parameters J; and 9, << 1, and the whole left-hand
side of Eq. (11), as well as the second term, can be neglected
so that Eq. (11) becomes

[x.(\ cos® 8 +sin? )], =0. (17)

The last equation has a solution
A 4
x(1,2) = TXJ (N cos® O+sin® )~ 'dz+x;,  (18)
0

where I=[{(\ cos? O+sin’ 6)~'dz, Ax=(T,~T,)/Ty;, and ;
=T;/Ty;, and T,=T; or T,, respectively.

II1. ORIENTATIONAL RELAXATION OF THE DIRECTOR,
VELOCITY, AND TEMPERATURE FIELDS IN THE
HOCLC CELL

The relaxation of the director i to its equilibrium orien-
tation fi.q, which is described by the polar angle 6(7,z), from
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FIG. 1. (Color online) The velocity components v,(7,z) (a) and
v.(7,z) (c), as well as the polar angle 6(7,z) [in rad] (b) [
=(K,o/ y10d°)t is a dimensionless time] vs distance z away from the
lower cooler (x,—o=x1=0.97) to the upper warmer (x.—;=x;+Ax)
bounding surfaces at different times 7(1)=0.1 [curve (1)] and 7(k)
=(k/5)7g, k=1,...,5, whose values increase from curve (1) to
curve (5). Here Ax=0.0162 and 74~ 0.5.

the initial condition §(7=0,0.0<z=<1.0)=7 to 6, [see, Fig.
1(b)], and both velocities u(7,z)=v.(7,z) and w(7,z)
=v,(7,z) [see Figs. 1(a) and 1(c)], in the HOCLC cell, at
different times (7(1)=0.1 (~7s) [curve (1)],..., 7(5)=7x
=0.5 (~36 s) [curve (5)]), are shown in Fig. 1. In the studied
case, the sample is heated from above with the dimensionless
temperature difference Ax=0.0162 (~5 K). This has been
calculated by solving of the system of the nonlinear partial
differential equations (2), (8)—(10), and (18), together with
the boundary conditions (12) and (13), by means of the nu-
merical relaxation method [23]. Here 7 is the relaxation
time of the system. In that case, the lower cooler surface was
kept x.—o=x1=0.97 (T, ~298 K). The relaxation processes
both of the dimensionless temperature x(7,z) and density
p(7,2) to their equilibrium distributions x.4(z) and pey(z)
across the LC cell, are characterized practically the linear
increasing the values of x(7,z), from y; to x, [see Fig. 2(a)],
and decreasing the values of p(7,z), from p(z=0) to p(z
=1) [see Fig. 2(b)], respectively. In the calculations, the re-

0.99 @ . .
a -N- —
_ 0_,=0;6,_ =n/2
N
£0.98¢ (1)
(13)
097 ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0
(b) (1)=0.004
0.999} 1 1(13)=0.5 |
<
a 13
0.996} (13)

00 02 04 06 08 10
z
FIG. 2. (Color online) The dimensionless temperature x(7,z) (a)
and density p(7,z) (b) vs distance z away from the lower cooler
(Xz=0=x1=0.97) to the upper warmer (x,-;=x;+AY) bounding sur-
faces during the time term 7 corresponding to Ay as in Fig. 1.
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5

ECE ' ' ' 6
.03} (1)

1600 02 04 06 08 10

1.21(b) ) ]
X 08y (5) 1,.,=0.9862]
= 0.4} 1,.,=0.97

0.0 N = Mt

00 02 04 06 08 10

T

0440 «(1)=0.1
<02 o (5)=0.5]
o
‘ (5) ‘ ‘ ‘
0.0 0.4

0.0 0.2 , 06 0.8 1.0

FIG. 3. (Color online) The same as in Fig. 1, but the temperature
gradient directed from the upper cooler (x.-;=x»=0.97) to the
lower warmer (y.—o=x»+Ax) bounding surfaces during the time
term 75~ 0.5. Here Ay=0.0162.

laxation criterion €=|(6,41)(7,2) = 0(,)(7,2))/ 0)(7,2)| Was
chosen equal to be 107, and the numerical procedure was
then carried out until a prescribed accuracy was achieved.
Here m is the iteration number and 75 is the relaxation time.
According to our calculations, the relaxation processes both
the dimensionless velocities v,(7,z) and v.(7,z), in the HO-
CLC cell, are characterized by the monotonic decrease of
|vi(7,2)| (i=x,z) upon increasing 7, before getting to the
equilibrium distributions u,(z) and wey(z) across the LC cell.
These distributions are characterized by the minimums near
the middle part of the LC cell, where both the hydrodynamic
flows are directed in the negative direction [see Figs. 1(a)
and 1(c)]. Notes that the vertical component of the hydrody-
namic flow w(7,z) change a direction, from the positive to
the negative, across the full thickness of the LC cell, after the
time term A7~0.2 (~14 s), from the beginning of the relax-
ation process, whereas the horizontal component of the hy-
drodynamic flow u(7,z) is keep a negative direction during
the full relaxation term 73~ 0.5 (~36 s). The maximum both
the absolute magnitudes of the dimensionless velocities
v(7,2)=(y10d/ K o)vi(7,2) (i=x,z), in the HOCLC cell, at
the final stage of the relaxation process are equal to 0.2
(~0.3 um/s) and 0.7 (~1 um/s), for vertical and horizon-
tal components, respectively [see Figs. 1(a) and 1(c)], at
Ax=0.0162. It should be pointed out that the dimensionless
temperature field x(7,z) relaxes to its equilibrium distribu-
tion xe4(z) across the LC cell during the time term A7
~107% (~1 s), which means that the temperature field re-
laxes much faster, approximately one order of magnitude,
then relaxes both the dimensionless velocity components and
the director. The character of the relaxation process of the
dimensionless velocity fields u(7,z) and w(7,z) with chang-
ing 7, before getting to the equilibrium distributions u,(z)
and wey(z), across the LC cell, is changed with changing of
the temperature gradient direction [see Figs. 3(a) and 3(c)].
According to our calculations, when the temperature gradient
was directed from the bottom to the top surfaces (x,> x;),
one has arrived to the picture where the LC fluid settles
down to the stationary flow regimes in the negative direction,
both for the horizontal and vertical components of the hydro-
dynamic flow [see Figs. 1(a) and 1(c)], whereas in the case
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FIG. 4. (Color online) The same as in Fig. 2, but the temperature
gradient directed from the upper cooler (x,-;=x,=0.97) to the

lower warmer (x,—o=xX»+Ax) bounding surfaces during the time
term 75~ 0.5. Here Ax=0.0162.

when the temperature gradient was directed from the top to
the bottom surfaces (x;>> x,), one has arrived at the picture
where the LC fluid settles down to the stationary flow re-
gimes in the positive direction, both for the horizontal and
vertical components of the hydrodynamic flow [see Figs.
3(a) and 3(c)]. In the last case, the maximum of the absolute
magnitude of the dimensionless velocity u(7,z)
=(y10d/ K p)v(7,2), in the HOCLC cell, at the final stage of
the relaxation process is equal to 0.3 (~0.4 um/s) [Fig.
3(a)], whereas the maximum of w(7,z) is equal to 0.1
(~0.14 wm/s) [Fig. 3(c)], at Axy=0.0162, respectively. At
that, the dimensionless relaxation time is 7,~0.5 (~36 s).
According to our calculations the relaxation of the director fi
to its equilibrium orientation A.g, which is described by the
polar angle 6(7,z) from the initial condition 6(7=0,0.0<z
<1.0)=7 to 6, at different times (7(1)=0.04 [curve (1)],
7(2)=0.08 [curve (2)], ...,7(13)=7,=0.5 [curve (13)]), is
shown in Fig. 3(b). In that case the sample is heated from
below with the dimensionless temperature difference Ay
=0.0162 (~5 K). The relaxation processes of the dimension-
less temperature x(7,z) and density p(7,z) to their equilib-
rium distributions x.q4(z) and pey(z) across the LC cell, are
also characterized practically the linear behavior [see Figs.
4(a) and 4(b)] of these quantities. In the case when the di-
rector is weakly anchored to the upper restricted surface (z
=1), the effect of the dimensionless strength anchoring
(Ad/K55)A6 on the magnitudes, both u(7,z) and w(7,z), are
negligibly small and practically does not change the equilib-
rium distributions of these velocities between two bounding
surfaces. Our calculations also show that the relaxation time
7z of the velocity field u(7,z) to u(z) across the HOCLC
cell increase up to 15%, in the case of the weak anchoring
[(Ad/K33)A0=0.1] on the upper bounding surface in com-
parison with the case of the strong anchoring. Such behavior
of u(7,z) shows that the director field, in the vicinity of the
upper restricted surface, has a weak influence on the velocity
field. Indeed, due to the decrease of interactions between the
solid wall and the LC phase, in the case of the weak anchor-
ing to the upper boundary, the LC system spend a little bit
more time for relaxation to its equilibrium distribution across
the LC sample than in the case of the strong anchoring. So,
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the strong anchoring may be expected to produce a greater
rigidity of the LC sample near the solid wall. Note, that in
both last cases, the temperature gradient was directed from
the top to the bottom of the bounding surfaces.

IV. ORIENTATIONAL RELAXATION THE TOTAL STRESS
TENSOR COMPONENTS

Our attention now turns to the stress tensor o;; which also
can be obtained directly from the Rayleigh dissipation func-

tion R(t,2)=(K7y/ v10d ) R(7,2) as [9,24,25]

0,(7) = IR(7)/du, (19)
and

oo (1) = IR(7)/dw_, (20)

where it is taken into account that o, =07, +0%, and o2 =0.
Having obtained o-,, and using the relation o,(7)—0.(7)
=JR(7)/d6,, one can calculate the dimensionless stress ten-
sor component o, which takes the form

0= 0 -[6O0L+3G/0F. (D)

In the case of planar geometry, the form of ¢?_ is given by
oy (1.2) = 02(1.2), (22)
whereas the full forms of o,, and o,, are given by

Uzz(T’Z) = ng(T’Z) + O';(T,Z) = O'EZ(T,Z) - g(&)&f (23)

&4

and
o.(1.2) =0 (1.2) + 0L (1.2) = 07(7,2), (24)

respectively. Here it is taken into account that 0% =0 (see the
Appendix). Calculations of the evolution of the dimension-
less stress tensor components 0,(7,z), 0 (7,2), 0,(7,2),
and o,,(7,z) vs distance z away from the cooler (x.-o=xi
=0.97) lower surface directed to the warmer (x.—;=x;
+AY) upper one, and from the warmer (x,-o=x;+Ax) lower
surface directed to the cooler (y.—;=x,=0.97) upper one, in
the HOCLC cell, using Egs. (2), (8)—(10), and (18), with the
boundary conditions (12) and (13), at different times, are
shown in Figs. 5 and 6, respectively. The relaxation of
0,(7,2) (i,j=x,2) to its equilibrium values 0'39(1), at the final
stage of the relaxation process, at different times (7(1)=0.1
[curve (1)], 7(2)=0.2 [curve (2)], ...,7(5)=7,=0.5 [curve
(5)]), when the sample is heated from above with the dimen-
sionless temperature difference Ax=0.0162 (~5 K), is
shown in Fig. 5. The normal o,(7,z) [Fig. 5(a)] and shear
0. (7,2) [Fig. 5(b)] components of the stress tensor o;(7,z)
demonstrate a strong increase of the absolute magnitude of
these quantities in the vicinity of the bounding surfaces z
=0 and z=1, and the decrease of |o;(7,z)| (i=x,7) to zero, in
the middle part of the HOCLC cell. Calculation also shows
that the relaxation processes both the dimensionless shear
0,(7) and normal o.(7) stress tensor components are char-
acterized by monotonic decreasing of these quantities across
the LC sample with growth of time. At that the values of o,
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FIG. 5. (Color online) The dimensionless stress tensor compo-
nents 0,,(7.2) (a), 0(7.2) (b), 0(7.2) (©), and 0..(7.2) (d), vs
distance z away from the lower cooler (x,-o=x;=0.97) to the upper
warmer (x,-;=x;+Ayx) upper bounding surfaces in the HOCLC
cell, at different times 7(1)=0.1 (curve (1) and (k)=(k/5)1g, k
=1,...,5, whose values increase from curve (1) to curve (5). Here
Ax=0.0162 and 74~ 0.5, respectively.

and o, are negative, with growth of time 7. Note that both
0.(7) and o,.(7), according to Egs. (15) and (16), are only
time-dependent functions. When the temperature gradient di-
rected from the cooler upper (x,=0.97) to the warmer lower
(X1=x2+Ax) restricted surface, the relaxation of o;,(7,z)
(i,j=x,z) to its equilibrium value o%(z), at different times
(7(1)=0.1 [curve(1)], 7(2)=0.2 [curve(2)], ..., 7(5) =7

=0.5 [curve(5)]), is shown in Fig. 6. Here the sample is
heated with the dimensionless temperature difference Ay
=0.0162 (~5 K). In that case the normal o,,(7,z) [Fig. 6(a)]
and shear o.(7,z) [Fig. 6(b)] components demonstrate, as in
the previous case [Figs. 5(a) and 5(b)], a strong decrease of
the absolute magnitude of these quantities in the vicinity of
the bounding surfaces z=0 and z=1, and the decrease of
|oi(7,2)| (i=x,z) to zero, in the middle part of the HOCLC

0.78
c) (1)
0.76 sz
0.74
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00 02 04 06 08 10 00 02 04 06 08 10
2 2.2
(b d) (5)
e -
0 26 1(1)io1
p o 1(5)=0.5
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2 (1 (1
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FIG. 6. (Color online) The same as in Fig. 5, but the temperature
gradient directed from the upper cooler (x.-;=x,=0.97) to the
lower warmer (x,—o=x»+Ax) bounding surfaces in the HOCLC
cell.
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cell. But in the last case [Figs. 6(a) and 6(b)], in the vicinity
of the warmer lower restricted surface (z=0), the normal o,
and shear o,, components are both directed in the positive
directions, whereas in the previous case [Figs. 5(a) and 5(b)],
these quantities, in the vicinity of the cooler lower restricted
surface, are directed in the negative direction, respectively.
The character of relaxation process of o,(7,z) (i=x,z) is
also changed with changing of the temperature gradient di-
rection [see, Figs. 5(a) and 5(b) and Figs. 6(a) and 6(b),
respectively], in the vicinity of the upper restricted surface.
The maximum of the absolute magnitude of the dimensional
stress tensor components ;;=(Ko/d*)oy; (i,j=x,z), at the
final stage of the relaxatlon process has been found
~0.004 Pa, for the normal component o, in the vicinity of
the warmer lower restricted surface. Such behavior of the
equilibrium distribution of o;;(z) (i,j=x,z) shows that the
direction and magnitude of the hydrodynamic flow has a
strong influence on the character of the relaxation process of
the stress tensor components o,,, 0., 0,,, and o,,, and that
behavior both qualitatively and quantitatively differ than one
corresponding to confined incompressible LC film under in-
fluence of the vertical temperature gradient [9].

V. CONCLUSION

In summary, we have investigated the relaxation of direc-
tor fi(z,r), velocity v(z,r), density p(¢,r), and the stress ten-
sor components o;(¢,r) (i,j=x,z) in the HOCLC cell to
their equilibrium values under influence of the temperature
gradient directed normal to the bounding surfaces. Our cal-
culations, based upon the classical Leslie-Ericksen theory,
shows that the HOCLC material under influence of the tem-
perature gradient, settles down to a stationary flow regime
with the horizontal u and vertical w components. It has been
also shown that the magnitudes of these velocities # and w
are proportional to the tangential and normal components of
the stress tensor components o’z’f and of'z”, and the direction

of v=ui+wk influence the direction of heat flow. At that, the
character of the preferred anchoring of the director to the
bounding surfaces, practically, does not influence on the
magnitudes of these velocities. Notes, that in the case of the
hybrid-oriented incompressible LC cell, where, due to an
incompressibility condition V-v=0, there is only one non-

zero component of the vector v, viz., V=Uxf = uf, the charac-
ter of the preferred anchoring of the director to the restricted
surfaces has a strong effect [9] on the magnitude of u(z),
excited by the heat flow. In the case of the compressible
fluid, that horizontal stationary flow u(z) is directed in the
opposite direction, approximately, in one order of the mag-
nitude less, than one in the case of the incompressible fluid.
The maximums of the absolute magnitudes of the dimension-
less horizontal velocity v (7,z)=(y,0d/ K 0)v(7,2) (i=x,2),
in the HOCLC cell, at the final stage of the relaxation pro-
cess, approximately, one order of the magnitude less, than
one in the case of the incompressible fluid. Such redistribu-
tion of the stationary hydrodynamic flow in the HOCLC fluid
leads to differ redistribution, than one in the case of the
incompressible fluid, of the stress tensor components. So, the
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maximum of the absolute magnitude of the dimension stress
tensor for the normal component &..=(K,y/d?)o,., at the fi-
nal stage of the relaxation process, has been found to be
~0.002 Pa, one order of magnitude less than in the case of
the incompressible fluid [9].

We believe that the present investigation can shed some
light on the problem of the reorientation process in the HO-
CLC cell under influence of the vertical temperature gradi-
ent. We also believe that the paper shows not only some
useful routes for estimating the relaxation times, but also
analyzing the remaining problems associated with LC device
stability, efficiency, and lifetime.

APPENDIX: RAYLEIGH DISSIPATION FUNCTION AND
THE STRESS TENSOR COMPONENTS

In the case of compressible nematic fluid d,0+V - (pv)=0,
it is convenient to rewrite the Rayleigh dissipation function
R(z,z) in the form with and without accounting for the com-
pressible term as [24]

R(t,z) = R(t,2) + R,(t,2), (A1)

where R,(t,z)= (o'+ ~a 0V):vV=0":vV and Ry(7,2)
=(o™"- nXﬁ‘A}VF) oV-0-E: (0+5€/:l nV) ooV
—0-&:0v, respectrvely Here v and o are the linear and an-
gular velocities, Vv and Vo are the gradients of these fields,
o=0"+0° and 0"=0"""+ 0™ are the stress and the momen—
tum stress tensors, & is the Levi-Civita tensor, Wy= 2[K ln

+Kqn? ] is the Frank elastic energy, fi= (nx,O n.), K, and K3

W

are the Frank elastlc constants =% vyr O° ___av nv, o™
n

== and ¢"=h >< — are the viscous and elastic contribu-

trcflzs to the total stressV o and momentum stress o tensors,
respectively. We use invariant, multiple dot convention:
a-b=ab;, A-B=A;By;, and A:B=A;B,;, where repeated
Cartesian indices are summed. By means of decomposition
of the tensors on the spherical, symmetric and asymmetric
deviators one can rewrite the last two tensors and gradients
vV and @V in the form [24] 0¥=0{Z+d"+0", 0™ =0}"T
+a™+d", vV =0yZ+vV +vV, and 0V =w,Z+ oV + wVa,
respectively. Here 7 is the unit tensor. Now the full dissipa-
tion function R can be written as

R(t,2) = oquol: T+ 00:vV + 0:vV, + of)
+ a0V,

‘oI + dt": @V,
(A2)

In the following, one deals with the complicated flow v
=(u,0,w) excited by the temperature gradient and the direc-
tor reorientation with four components of the viscous stress
tensor o, oy, -, and o7, which are connected each other
by relations 20(=0%,+0%., 2v9=w,, and 200=JR /v, re-
spectively. Taking into account the last two equations (A1)
and (A2), the equations for the tensor components o%, and
0. can be written in the form
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IR(t,z
o +0y,=2 &fv ), (A3)
Z
IR(t,2)
o’ = PV (A4)

Z

The last system of equations (A3) and (A4) has a solution

PHYSICAL REVIEW E 79, 011708 (2009)

ot= .
Note that the compressible part of R(f,z) can be decom-
posed as 3 PV ~V+%U§’:(VV+VV)+%0'Z:(VV—VV), where o7
and o, are symmetric and asymmetic deviators of the tensor
0’, whereas P=0":Z=0" +07, is the viscous contribution to
the total pressure P. The elastic contribution to P is equal to
P=0°:I=0% + 0., ==2Wr. So, the total dimensionless pres-
sure is given by P=2(o%,—Wp).
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